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Abstract. We study quantum transport properties in quasiperiodic magnetic superlattices by
examining the motion of electrons in Fibonacci and Thue–Morse sequences. It is found that
transmission resonances exhibit complicated oscillations and selective suppression. The number
of resonant peaks decreases and their distribution becomes less regular in comparison to those
of the periodic magnetic superlattice. It is confirmed that both doublet and singlet resonances
exist in the quasiperiodic structure. It is also confirmed that complete resonant tunnelling can
occur in quasiperiodic systems due to the existence of completely transparent eigenstates. The
role played by a local magnetic barrier in the magnetic superlattice is investigated. The results
indicate that both the transmission coefficient and the conductance are drastically suppressed
with increment of the strength of a local barrier.

1. Introduction

The physical properties of quasiperiodic superlattices have attracted increased interest [1–
5] since the discovery of the quasicrystal phase [6, 7] and the actual construction of a
Fibonacci superlattice of GaAs/AlAs by Merlinet al [8]. Because of the nonperiodicity and
self-similarity, competition between localization and delocalization exists in quasiperiodic
systems and many intriguing electronic and optical properties have been investigated.
Theoretically, for one-dimensional quasiperiodic systems, it has been found that the energy
spectrum is singular and continuous and that the wave functions are critical, i.e., neither
extended nor localized [9, 10]. This kind of eigenstate was also found in two- and three-
dimensional quasicrystals. Quasiperiodic superlattices can be considered as intermediate
between periodic crystals which lead to energy bands and disordered materials which cause
localization in one-dimensional systems. The Fibonacci and Thue–Morse sequences have
usually been adopted as the standard lattices in the study of one-dimensional quasicrystals.

The Fibonacci sequence is constructed by juxtaposing two different building blocks A
and B arranged in a Fibonacci sequence which is formed according to the rule

Sl+1 = {SlSl−1} (l > 1) (1)

with S0 = {B}, S1 = {A}. The Fibonacci integerFl is the total number of building
blocks A and B inSl , and obeys the recursion relationFl+1 = Fl−1 + Fl for l > 1 with
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F0 = F1 = 1. It is easy to obtain that in the limitn −→∞, the ratioFn/Fn−1 tends to the
golden meanν = (1+√5)/2.

The Thue–Morse sequence is a different type of aperiodic system, with a very different
kind of aperiodicity from that of the Fibonacci sequence. The Thue–Morse sequence is
obtained from the recursion relation

Ml+1 = {MlM
∗
l } (l > 0) (2)

with M0 = {A,B} and whereM∗l is the complement ofMl , obtained by interchanging A
and B. The Thue–Morse integer (the total number of building blocks A and B inMl) is
Nl = 2l+1.

Recently, the motion of a two-dimensional electron gas (2DEG) subjected to an
inhomogeneous lateral magnetic field on the nanometre scale has caused tremendous interest.
Experimentally, this kind of field has been realized with the creation of magnetic dots
[11], the patterning of ferromagnetic materials [12] and the deposition of superconducting
materials on conventional heterostructures [13]. Transport of electrons in a unidirectional
weak magnetic field modulation has been realized by several research groups [14]. They
observed oscillatory magnetoresistance due to an effect of commensurability between the
classical cyclotron diameter and the period of the magnetic modulation. These experimental
techniques open up the way to experiments in alternating magnetic fields with periods in the
nanometre region. Theoretically, the properties of the tunnelling through a thick potential
barrier under the influence of a local magnetic field were investigated by Ramagliaet al
[15] and they found that the magnetic field was localized strictly within the potential barrier,
which led to resonances that were centred within the barrier. The motion of a 2DEG in
an infinite strip which a magnetic field varies linearly across [16], in a smooth magnetic
barrier geometry of different shape [17] and in a curved 2DEG system were also studied
[18]. Most recently, studies on electron tunnelling through symmetric magnetic barriers [19]
and asymmetric magnetic barriers [20] showed that magnetic barriers possess wave-vector-
filtering properties and that the asymmetric double-barrier magnetic structure possesses
stronger filtering properties. The electronic and quantum transport properties of periodically
arranged magnetic barriers [21] and magnetic superlattices [22, 23] have also been studied
in depth. The latter study found that the energy spectrum consists of magnetic minibands.

The question that we raise here is that of what happens in the quasiperiodic magnetic
superlattice. By using electron beam lithography and standard lift-off techniques, it is
possible to fabricate magnetic superlattices with randomly distributed heights or thicknesses
of the magnetic barrier and well layers [14]. In a random sequence of magnetic barriers
and wells, quantum tunnelling is drastically affected by the randomness. Azbel [24] has
suggested the idea of resonant tunnelling in a random electric system. It may be interesting
to investigate electronic transport properties through a random sequence of multiple magnetic
barriers. Our numerically calculated results given in this work show that there are
several interesting and novel features of electronic transport in the quasiperiodic magnetic
superlattice. Selective suppression and complicated oscillations of transmission resonances
are found. It is confirmed that both the doublet resonance and the singlet resonance exist
in the tunnelling transmission spectrum. Moreover, the role played by a local magnetic
barrier is examined and a strong suppression effect of both the transmission coefficient and
the conductance is found in the case where the strength of a local barrier is larger than
others in the magnetic superlattice. The results obtained in this work shed new light on the
electronic transport through the periodic and quasiperiodic magnetic superlattices.
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Figure 1. A schematic representations of building blocks A and B.

2. Theory

We consider the motion of two-dimensional electrons (in the (x, y) plane) in a finite
quasiperiodic magnetic superlattice which is obtained by juxtaposing two different building
blocks A and B arranged in a Fibonacci sequence or in a Thue–Morse sequence. Schematic
representations of building blocks A and B are depicted in figure 1. Each building block
is made up of two types of term, i.e., a magnetic barrier (of amplitudeBi (i = 1, 2)) and
a magnetic well (of amplitude−Bi (i = 1, 2)). Throughout this paper the thicknesses for
all of the magnetic barriers and magnetic wells are set to take the same value, namelyd.
The total magnetic field over the whole 2DEG plane is zero. The Schrödinger equation is
written in the framework of the effective-mass approximation in each magnetic barrier and
well region as

1

2m∗
[P + eAi ]

2ψ(x, y) = Eψ(x, y) (3)

wherem∗ is the effective mass of an electron andAi the vector potential which is taken in
the Landau gauge,Ai = (0, Ai(x), 0).

For convenience, we express all of the quantities in dimensionless units by using the
cyclotron frequencyωc = eB0/m

∗ and the magnetic lengthlB =
√
h̄/eB0 (B0 is set to be

0.1 T which is an estimated value [19, 20]). For GaAs,m∗ can be taken as 0.067me (me is
the free-electron mass). The coordinater is in units oflB , Ai in units ofB0lB and the energy
E in units of h̄ωc. Since they-component of the electron momentum operator commutes
with the Hamiltonian, the wave function can be written as a productψ(x, y) = eikyyψ(x),
whereky is the wave vector of the electron in they-direction. Accordingly, we obtain the
following 1D Schr̈odinger equation:{

d2

d2x
− [Ai(x)+ ky ]2+ 2E

}
ψ(x) = 0. (4)

The functionV (x) = [Ai(x) + ky ]2/2 can be interpreted as aky-dependent electric
potential [19, 20]. In the left-hand and right-hand regions, the wave functions are the free-
electron wave function, which can be written asψl(x) = eiklx + reiklx , and9r(x) = τeikrx ,
where ki =

√
2E − [Ai(x)+ ky ]2 (i = l, r); τ and r are transmission and reflection

amplitudes, respectively.
In the magnetic barrier and well regions, the wave functionψi(x) can be written as a
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linear combination of Hermitian functions [20]:

9i(x) = exp

(
−ξ

2
i

2

)
[CiU

1
i (ξi)+DiU

2
i (ξi)] (5)

whereξi =
√
m∗ωi/h̄(x − x0

i ), ωi = eBi/m
∗, Ci andDi are arbitrary constants,U1

i and
U2
i in equation (5) are Hermitian functions. Matching the wave functions at the edges of

the magnetic barriers and magnetic wells, the transmission amplitudeτ and the reflection
amplituder are obtained. Then, the transmission coefficient of electron transport through
the finite quasiperiodic magnetic superlattice is given by

T (E, ky) = kr

kl
|τ |2. (6)

In the ballistic regime, the conductance can be derived as the electron flow averaged
over half of the Fermi surface [19, 25]:

G = G0

∫ π/2

−π/2
T (EF ,

√
2EF sinφ) cosφ dφ (7)

where φ is the angle of incidence relative to thex-direction, EF is the Fermi energy,
G0 = e2m∗vF l/h̄2 with l the length of the structure in they-direction andvF is the Fermi
velocity.

Figure 2. The transmission coefficient for electrons tunnelling through two finite periodic
magnetic superlattices. (a1), (a2) and (a3) are for ones which are periodic arrangements of
block A (with B1 = 0.1 T andd = 1); (b1), (b2) and (b3) are for the other case, which is
a periodic juxtaposition of two different blocks A (withB1 = 0.1 T andd = 1) and B (with
B2 = 0.2 T andd = 1).
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3. Results and discussion

In order to achieve a better understanding of the electronic transport properties in the
quasiperiodic magnetic superlattice, first of all, in figures 2(a) and 2(b) we present our
model numerical results for the transmission coefficient for electrons tunnelling through
two finite periodic magnetic superlattices. One is a periodic arrangement of building block
A, while the other is a periodic juxtaposition of two building blocks, A and B. The total
number of blocks in the two cases is set to be eight. (a1) and (b1) correspond toky = 0.7;
(a2) and (b2) correspond toky = 0.0; (a3) and (b3) correspond toky = −0.7. Throughout
this paper, we have setd = 1 (in units of lB), B1 = 0.1 T for building block A and
B2 = 0.2 T for building block B. There are a few interesting features exhibited in figure 2
that we would like to summarize here.

(1) There exist resonant domains which are separated by non-resonant domains. Each
resonant domain consists of several resonant peaks of peak value unity.

(2) The transmission spectrum is very different for theky < 0 case to those for the
ky > 0 case. This feature reflects the strong wave-vector dependence of the transport in the
magnetic structure.

(3) One resonant domain in the superlattice which is a periodic arrangement of blocks A
splits into two resonant domains in the magnetic superlattice which is a periodic arrangement
of two different blocks A and B. In the latter case, the total width of resonant domains
narrows and the total number of resonance peaks decreases.

For semiconductor superlattices, the resonance splitting effect was investigated [26] and
(n − 1)-fold splitting for n identical barriers is obtained. Moreover, we found that one
resonant domain in semiconductor superlattices which consists of identical barriers splits
into two resonant domains in semiconductor superlattices in which two different barriers
(i.e., with different widths or heights) are periodically juxtaposed. In the latter case, each
time two new barriers are added to the existing ones, splitting will occur [27]. The detailed
results are given elsewhere. Since resonant domains in the transmission spectrum versus
incident energy reflect the formation of minibands of energy, all of the above-stated results
obtained for semiconductor superlattices are reasonably described by the miniband structure
of the corresponding superlattice. By extension, it is reasonable to attribute the formation
of resonant domains and non-resonant domains and the splitting features obtained in the
magnetic superlattice to itsky-dependent magnetic miniband structures. For a finite magnetic
superlattice, there is no continuous energy band. In each magnetic miniband only some
discrete andky-dependent energy is to be expected. In comparison to the magnetic miniband
of the periodic magnetic superlattice which consists of identical building blocks, minibands
split into sub-minibands in the magnetic superlattice which is a periodic juxtaposition of two
different blocks. Energy minibands are ones in which allowed energy bands are separated
by forbidden gaps [22]. The total number of discrete energy levels, the widths of the
bands and those of the gaps between them depend strongly on the wave vectorky . The
necessary condition for the transmission resonance to occur is that the energy of the incident
electron falls completely inside allowed minibands. Therefore, in the transmission spectrum
one can see not only resonant domains separated by non-resonant domains, but also rich
ky-dependent and structure-induced resonance splitting phenomena.

Figure 3 shows the numerical results for the transmission coefficient for electron
transport through two periodic approximants of the Fibonacci magnetic superlattice for
different incident wave vectorsky . For the curves from top to bottom, the corresponding
periodic approximants are of ordersl = 5 and l = 6, for which the total numbers of
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Figure 3. The transmission coefficient for electrons tunnelling through two periodic approx-
imants of the Fibonacci magnetic superlattice which are obtained by arranging block A (with
B1 = 0.1 T andd = 1) and block B (withB2 = 0.2 T andd = 1) in the Fibonacci sequence.
(a1), (a2) and (a3):l = 5; (b1), (b2) and (b3):l = 6.

building blocks are 8 and 13, respectively. (a1) and (b1) correspond to theky = 0.7
case; (a2) and (b2) correspond to theky = 0 case; (a3) and (b3) correspond to the
ky = −0.7 case. It is evident that there are several resonant peaks in the transmission
spectrum, and with increment of the order of the Fibonacci sequence, more peaks appear
and peaks become sharper. In comparison to that for the perfect periodic case (see
figure 2), the total number of resonant peaks decreases and their distribution becomes
less regular. Another noticeable feature is that transmission resonances show selective
suppression and markedly complicated oscillations between unity and very small values.
These features are associated with wave-vector-dependent hierarchical miniband structures
of the corresponding quasiperiodic magnetic superlattice. Through different eigenstates,
electrons with very different transmission coefficients tunnel through the corresponding
structure due to the disorder of the quasiperiodic system. When the degree of order of the
sequence is high, the number of minibands becomes large and the width of each miniband
narrows. Moreover, there are still several resonant peaks of peak value unity due to the
existence of completely transparent eigenstates [24].

Figure 4 indicates the results for the transmission coefficients for electron transport
through two periodic approximants of the Thue–Morse magnetic superlattice. (ai) and (bi)
(i = 1, 2) are for l = 2, 3 for which the unit cells are 8 and 16, respectively. Like
those in figure 3, panels (a1) and (b1) correspond to theky = 0.7 case; (a2) and (b2)
correspond to theky = 0 case; (a3) and (b3) correspond to theky = −0.7 case. We
can see that in the Thue–Morse sequence, transmission resonances exhibit complicated
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Figure 4. The transmission coefficient for electrons tunnelling through two periodic
approximants of the Thue–Morse superlattice which are obtained by arranging block A (with
B1 = 0.1 T andd = 1) and block B (withB2 = 0.2 T andd = 1) in the Thue–Morse sequence.
(a1), (a2) and (a3):l = 2; (b1), (b2) and (b3):l = 3.

oscillations and selective suppression somewhat like the transmission features exhibited in
the Fibonacci magnetic superlattice. However, the feature of selective suppression is very
different from that in the Fibonacci sequence, especially for the Thue–Morse sequence of
higher order. The extent of the suppression of the transmission peaks in the Thue–Morse
case is weaker than that in the Fibonacci sequence. In thel = 3 case where the total number
of building blocks is equal to 16, one can see that there are many transmission peaks
of peak value unity. This indicates that more electrons can tunnel through the structure
without suffering any scattering. As a general trend, it can be seen that with increment
of the order of the sequence, the total number of minibands becomes large and the total
width of the minibands narrows in comparison to those of perfect periodic superlattices with
equal numbers of building blocks. We can also see that the distribution of resonant peaks
becomes relatively more regular in the Thue–Morse sequence than that in the Fibonacci
sequence. This feature can be seen clearly for the quasiperiodic sequences of higher order.
Here we would like to offer some discussion concerning the degree of regularity of the
Thue–Morse and the Fibonacci sequences. There exist contradictory results on the degree
of regularity of Thue–Morse systems and Fibonacci systems. In reference [1] (1995), the
average value of the transmission coefficient was calculated for both kinds of quasiperiodic
system, and numerical results indicated that the Fibonacci system behaves more regularly
than the Thue–Morse system; however, in reference [5] it was claimed that the Thue–
Morse system is a link between the Fibonacci sequence and the periodic sequence as far
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Figure 5. The conductance for electrons tunnelling through (a) two Fibonacci sequences and
(b) two Thue–Morse sequences. The parameters of the sequences in (a) and (b) are exactly the
same as those in figures 3 and 4, respectively.

as the eigenstates are concerned. From figure 3 and figure 4 one can see that as far as
the feature of selective suppression of transmission resonances and that of the distribution
of transmission peaks are concerned, the Thue–Morse sequence can be considered as an
intermediate between periodic and Fibonacci systems and the Fibonacci sequence is a system
intermediate between quasiperiodic and disordered systems. Our results tend to agree with
the claim made in reference [5]. However, how can one measure the degree of regularity of
an aperiodic system? What is the standard that should be adopted? These questions need
further investigation, which is beyond the scope of our consideration in the present work.
From figure 4 one can once again see that for electron transport through quasiperiodic
magnetic superlattices with different wave vectorsky , the features of the tunnelling are
drastically different. In theky > 0 case, more very much sharper peaks can be seen than in
the ky < 0 case, especially in the low-incident-energy range. This renders the transmission
through magnetic structures an inherently 2D process, since the transmission coefficient
depends not only on the electron’s momentum perpendicular to the tunnelling barrier, but
also on its momentum parallel to the barrier.

Another noticeable result obtained in this work is that there exist doublet resonances
(the resonant tunnelling with a doublet) and singlet resonances (the resonant tunnelling
with a singlet) in the transmission spectrum of the quasiperiodic superlattice. More
doublet resonances appear in the higher-order approximants of the Thue–Morse sequence
(see (b1), (b2) and (b3) of figure 4). The doublet resonances were also confirmed as
existing in symmetricn-fold barrier structures (n > 3) [28] and in a double-antidot system
[29]. You et al [4] found isolated peaks of magnetoresistance by studying longitudinal
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Figure 6. Comparison of the conductances among periodic and quasiperiodic magnetic
superlattices. The thick solid, dashed, thin solid and dotted curves correspond to a periodic
superlattice that is an arrangement of blocks A (withB1 = 0.1 T and d = 1), a periodic
superlattice that is a juxtaposition of block A (withB1 = 0.1 T andd = 1) and block B (with
B2 = 0.2 T andd = 1), a Fibonacci superlattice and a Thue–Morse superlattice, respectively.
The total number of building blocks in all the four cases is set to be 8.

resistance oscillations in the Fibonacci semiconductor superlattice. In quasiperiodic
semiconductor superlattices, we also found that there exist doublet and singlet resonances
in the transmission spectrum. More detailed discussion of the physics of quasiperiodic
semiconductor superlattices is given elsewhere [27]. In all of the above work, some degree
of disorder is introduced into the system. The existence of the doublet resonance and
isolated peaks in this work is driven by the hierarchical splitting of the bands into subbands
of the quasiperiodic magnetic superlattice. It is known that a Thue–Morse sequence can be
considered as built up of four different kinds of constructing element: A, B, AA and BB,
while a Fibonacci one can be considered as built up of isolated As and Bs and AA clusters
[5]. Similarly to the case in which the periodic superlattice is arranged as two different
blocks, A and B, splitting of the energy bands occurs in the quasiperiodic case. However,
in this case the splitting is too complicated for obtaining a simple rule to generalize its main
features. Its features are not only determined by the parameters of the building blocks but
also determined by the wave vectorky . Since the four or three aperiodically alternating
clusters constitute the main construction pattern, the one that splits more is the dominating
hierarchical structure in the higher hierarchies which yield the occurrence of singlet and
doublet resonances.

As for measurable quantities, in figure 5 we show the numerical results for the
conductance for both the Fibonacci sequence (see figure 5(a)) and the Thue–Morse sequence
(see figure 5(b)). The comparison with the conductance of the periodic magnetic superlattice
is given in figure 6, where the total number of building blocks in four structures is set to
be 8. In figure 5 one can see that there are a few sharp peaks despite the averaging of
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the transmission coefficientT (E, ky) over half of the Fermi surface, especially in the low-
Fermi-energy range. With increment of the order of the Fibonacci sequence or that of
the Thue–Morse sequence, more peaks appear and the conductance exhibits complicated
oscillations. For higher-order approximants of quasiperiodic superlattices, on the whole
the conductance decreases. In figure 6 one can clearly see the main discrepancy in the
conductance between the periodic magnetic superlattice and the quasiperiodic superlattice.
The splitting characteristics exhibited by the transmission coefficient can also be seen clearly
in the conductance. One broad resonant domain of the conductance in the periodic magnetic
superlattice which is an arrangement of identical blocks (see the thick solid curve) splits into
two narrower resonant domains in the periodic superlattice which is a periodic juxtaposition
of two different building blocks (see the dashed curve). There are a few isolated peaks
and a relatively narrow domain for the quasiperiodic Fibonacci sequence (see the thin solid
curve) and the Thue–Morse sequence (see the dotted curve) in the low-Fermi-energy range.
Morever, in the wide-Fermi-energy range, the conductance for the quasiperiodic superlattices
decreases even in comparison to that for the periodic superlattice which is obtained by
periodically juxtaposing two different blocks. The reduction of the conductance is due to
the suppression of the transmission coefficient in the quasiperiodic superlattices.

Figure 7. The transmission coefficient for electrons tunnelling through (a) a perfect periodic
superlattice that is an arrangement of blocks A (withB1 = 0.1 T andd = 1) and (b) a superlattice
in which the parameters of the middle block are set to beB2 = 0.3 T andd = 1 and all of the
other blocks are exactly same as those in (a).

Finally, we examine the role played by a local magnetic barrier in the magnetic
superlattice. If there exists one special barrier with larger strength (i.e., larger height or
width, or both), will the transport motion of electrons be greatly changed or not? As an
example, in figure 7 and figure 8 we present our numerical results for the transmission
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Figure 8. The conductance for electrons tunnelling through a perfect periodic superlattice that
is an arrangement of building blocks A withB1 = 0.1 T andd = 1 (see the solid curve), one
superlattice in which the parameters of the middle block are set to beB2 = 0.3 T andd = 1
(see the dotted curve) and one superlattice in which the parameters of the middle block are set
to beB2 = 0.5 T andd = 1 (see the dashed curve). The parameters of all of the other blocks
in the two latter cases are set to beB1 = 0.1 T andd = 1. The total number of blocks in each
of the three structures is equal to 11.

coefficient and the conductance for one periodic superlattice and two aperiodic magnetic
superlattices in which the strength of the middle block is larger. The total number of
building blocks in the three structures is set to be 11. Figure 7(a) shows the results for a
perfect periodic superlattice in which all of the magnetic barriers are identical (d = 1 and
B1 = 0.1 T). Figure 7(b) shows the results for a magnetic superlattice in which the height
of the middle barrier is set to 0.3 T and all of the other ten building blocks are exactly same
as those in figure 7(a). In each of subplots, dotted, solid and dashed curves correspond
to ky = 0.7, ky = 0.0 and ky = −0.7, respectively. In comparison to the transmission
coefficient for electrons tunnelling through the perfect superlattice (see figure 7(a)), it is
evident that, except a few transmission peaks at resonance of peak value unity, most of
them are drastically suppressed, especially in the low-energy range for theky > 0 cases.
The total number of resonant peaks greatly decreases, and the interval between adjacent
peaks is enhanced (see figure 7(b)). If we change the position of the special building
block from the middle position to the side positions, similar results can be obtained. Here,
in order to avoid unnecessary repetition, we do not present the numerical results again.
Drastic suppression can also be seen clearly in the conductance (see figure 8) due to the
drastic reduction of the transmission coefficient. Physically, the variation of the strength of
a local magnetic barrier in the magnetic superlattice substantially disrupts the periodicity of
the structure, and thus the motion of the electrons is greatly changed, which results in the
reduction of both the transmission coefficient and the conductance.
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4. Summary

In summary, we have systematically investigated electronic tunnelling properties in the
quasiperiodic magnetic superlattice. One prominent feature is that the transmission
coefficient exhibits selective suppression and complicated oscillations. The total number
of resonant peaks decreases and the total width of the resonant domains narrows. To some
extent the distribution of resonant peaks becomes irregular in comparison to that of the
periodic superlattice. Another prominent feature is that there exist singlet and doublet
resonances; in particular, there are more cases of resonant tunnelling with doublets existing
in higher-order approximants of the Thue–Morse sequence. Disorder of the quasiperiodic
system destroys the regularity of the structure; however, with certain incident energies and
wave vectors, electrons can tunnel through the whole structure completely without suffering
any scattering. In the quasiperiodic magnetic superlattice, on the whole the conductance
is decreased. However, one can get several sharp conductance peaks in the low-Fermi-
energy range which cannot be obtained in the perfect periodic magnetic superlattice. It is
confirmed that a local magnetic barrier plays a dominant role in electron transport through
the magnetic superlattice. The increment of the strength of a local magnetic barrier yields
drastic suppression of both the transmission coefficient and the conductance of tunnelling
electrons.
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